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ABSTRACT

Humans can perform many complicated tasks without explicit rules. This inherent and
advantageous capability becomes a hurdle when a task is to be automated. Modem
computers and numerical calculations require explicit rules and discrete numerical
values. In order to bridge the gap between human knowledge and automating tools, a
knowledge model is proposed. Knowledge modeling techniques are discussed and
utilized to automate a labor and time intensive task of detecting anomalous bearing wear
pattems in the Space Shuttic Main Engine (SSME) High Pressurc Oxygen Turbopump
(HPOTP).
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Chapter I

INTRODUCTION

Imagine a futuristic house without mundane chores: no more mowing, weekend
car maintenance, plumbing repairs, etc. Imagine an automated system that performs all
these dreaded chores with a push of a button. What a great dream!

To appreciate the intricate processes for automating these chores, let's look at a
fairly simple task that many of us perform, for example, mowing. Mowing may seem
like an innocuous task, but it involves many complicated design issues. Onc design issue
involves path planning, i.e. how to efficiently cut the desired arca without leaving uncut
patches. The path planning should incorporatc collision avoidance and tcrrain
management. Object rccognition should be implemenied. How does a mower identify
different debris and objects, and then make a decision to mow right through the object
or to avoid the object? How does it compensate for uneven terrain with pot holes and
severe slopes? This example illustrates complexities of an automated task. Even a simple
task such as mowing takes extensive efforts to automate.

However, if the difficultics of automation can be overcome, the benefits can be
enormous. Cost reductions and time savings can be achieved. Human operators can be
freed from mundane labor-intensive tasks.

This document lays out a theoretical background on knowledge modeling.
Specifically, this document deals with techniques that could be used to automate tasks
that are currently pcrformed manually by human operators. A knowledge model is
proposed, and a series of techniques are discussed for automation. Based on knowledge
models and techniques, an automated data analyzer is implemented for the Space Shuttle
Main Engine (SSME) vibrational data.



Chapter 2

BACKGROUND

A. Definition of Knowledge

In this document, a definition of knowledge is proposed from the perspective of
a knowledge acquirer, a person who gathers information from cxperts. By usc of the
definition, a knowledge model is developed and implemented.

If a task is performed with a conscious intention, then it is said that knowledge is
available for the task. If a person hits a golf ball with an intention of hitting the ball,
there is available knowledge for the hitting task. If a person hits a ball accidentally off
the tee, then there may not be knowledge available for the mishap. If the available
knowledge can be described in any physical means, written, demonstrable, verbal, or
other means, then the knowledge is defined as accessible. If the knowledge is
subconscious and cannot be described, the knowledge is said to be inaccessible.
Accessible knowledge can be further divided into explicitly accessible and implicitly
accessible. Explicitly accessible knowledge can be exccuted by other humans, computcrs,
and devices with the exact same results. /mplicitly accessible knowledge results in similar

outcomes when performed by different operators.

Inaccessible

Knowledge <
Explicitly Accessible

Accessible

Implicitly Accessible

Figure 2.1 Knowledge Definition



For example, the multiplication table represents explicitly accessible knowledge.
Written musical notes are also explicitly accessible knowledge. These are explicitly
accessible since these tasks using this knowledge will result in exactly the same rcsults.
Two times five is ten. Whether a calculator performs the task, or an individual does it, the
result should be the same. If a piece of music score is copied, the exact same results are
achieved. A quarter note in C will be copied onto a music sheet as the same.

However, the real world is not multiples of integers or a series of quarter notes.
The real world rarely can be modeled using cxplicit notations and formulas. Implicitly
accessible knowledge describes a large domain of human knowledge. Implicitly
accessible knowledge, when cxecuted, results in similar outcomes. Buying two apples at a
grocery store by different individuals will result in similar outcomes. Rather than making
a long specification of exact weight, size, and color, the requirements arc rcduced 10
having two apples without sacrificing the main objective. Driving a car at 55 miles per
hour (mph) implies driving a car at approximatcly 55 mph. If the actual speed was 54.1
or 55.6, in most cascs, the objcctive is achieved.

Unlike the above examples, some domains of knowledge may not be accessible.
Often athletes talk of 'fecl for the shots' and 'being in the zone.' All these lingoes
describe combinations of psychological, physiological, and ncuromuscular states that arc
hard to describe. If a tennis player was asked to describe the feel of a successful top-spin
forehand, the player would be at a loss for words. In order to tcach an athlete to acquire
the feel, an instructor may have to demonstrate the physical attributes. A description of
cause and cffect may have to be explained as well. This type of knowledge description is
rather indirect in nature. Using indirect characterization such as cause-and-cffect and
other attributes, knowledge can be descibed to another individual.

The boundarics of these knowledge classes vary based on very subjective criteria,
such as the participants' expertise, prior experiences, context, etc. What may seem 0 be
quite accessible to one person may not be accessible to another person at all. It is also
possible for a certain piece of knowledge to move and become another class of
knowledge. Accessible knowledge becomes inaccessible as the person becomes more
familarized with the task [Kidd, Welbank, 1984].

Humans have an innate capacity to proccss accessible and inaccessible
knowledge to perform various activities without conscious rcalization of the processes.

When we perform tasks without conscious realization. it becomes very difficult to



develop a link between the human knowledge and machine knowledge. Automation of
manual tasks is feasible when human knowledge can be translated into the computer
domain and language. Then, how do we bridge the human knowlege and the computer

system? The next section proposes some knowlege modeling techniques.

B. Knowledge Modeling
This section describes the various types of knowledge modeling techniques.

1. Explicit Knowledge Modeling
a. Bi-level logic modeling

This is a True/False type of representation. 'S./ is greater than
5.0." This statement can be regarded as a True/False statement. There is
an explicit relationship alrcady defined by what is mcant by 'greater.’
Furthermore, the statement has a definite truth/falsity assigned to it. A

truth table can be constructed using bi-level logic.
b. Notational modeling

By using explicit notations (mathematical symbols, musical notes,
ctc.), it is possible to model explicitly accessible knowledge. Mathematics
utilizes explicit notations for opecrators and operands. Musical notes are
also explicitly expressed. A line with the slope 2 and intercept 5 in a 2-
dimensional space can bc expressed as v = 2x + 5. This cquation of a

line is a representation using explicit mathematical terms.
2. Implicit Knowledge Modeling

One technique to model implicit knowledge is to employ
continuous logic (sometimes called analog logic). Continuous logic can
be viewed as a superset of bi-level logic. In the domain of continuous
logic, knowledge is modeled via pseudo-continuous lcvel membership.
One example would bc fuzzy logic that models linguistic expression
such as slow, fast, hard and soft. For example, in an cxpression,'/t is

raining hard. ', the word ‘hard' is understood qualitatively, not with



explicit numbers such as 5.0 inches per hour. This is considered an
implicit knowledge representation technique. The meaning of hardness
varies with individual cases, but in this context hard rain is an
understood situation. Analog logic and fuzzy systems allow mapping of
a large sector of human knowledge to numerically definable

representations.
3. Inaccessible knowledge modeling

One modeling technique that is well suited for inaccessible knowledge is
a class of biololgically motivated modecling techniques. Thesc biologically
motivated modeling tcchniques arc devcloped based on biological, physiological,
and psychological cnvironments. The most well-known case in the development
of biologically-motivated modeling is Artificial Ncural Networks (ANNSs).
Artificial Neural Networks arc based on artificial ncurons which consist of a
summation node and a non-lincar threshold function (sce Figure 2.2). The

output of the jth neuron, Oj, is

0; = Thr (O, 1Wh),

where Thr is a threshold function.

Figure 2.2 Artificial Neuron

Using layers (or slabs) of artificial ncurons, an ANN can Icarn complex non-

linear transfer functions. A typical ANN may look like Figure 2.3.




Input Hidden Ouput
Layer Layer(s)

Figurc 2.3. Artificial Neural Networks

The biologically motivated modeling techniques have been used to classify and
to model many phenomena that are not easily modeled otherwise. For example,
ANN's ability to learn without explicit instruction can be used to model

inaccessible knowledge.



Chapter III

PROBLEM STATEMENT

A. Selection of Test Case

In order to implement an automated system and to prove fcasibility, a set of

criteria was determined to select a candidate system. These criteria were:

Real Case - The test should be based on a rcal application, not simulation
alone.

Human Knowledge Availability - There is existing human knowledge or
experts in the field.

Data Availability - Data is rcadily available for tests and verification.
Potential Benefits - Benefits can be realized in the near futurc and can be
proved to enhance existing approaches.

Feasibility - The task should not require inordinatc cost and time.

Two cases were investigated for its potential benefits. One was a
keyboard cntry device using Electroencephalogram (EEG) data. This type of
device could be used for quadriplegics. However, data acquisition using human
subjects became questionable. Furthermore, the need for a fairly complicated
data acquisition unit was another dcterrent. The second candidate was Space
Shuttle Main Engine (SSME) diagnostics. This scemed to fit all criteria well.
There is human cxpertise available, yet the expertise has been very difficult to
document and to automate. A massive amount of engine data is available locally
‘at NASA/Marshall Space Flight Center via computer network. Furthermore,

automating such tasks can result in significant reduction of man-power and time.



Space Shuttle Main Engine Diagnostics

1. Background

During the development of the Space Shuttle Main Engine
(SSME), significant progress has been made in both NASA and the
aerospace communilies in improving the diagnostic cvaluation of high
frequency dynamic data. Fast and reliable evaluation of such data is
crucial to the Space Shuttle Operations program for preventing
catastrophic cngine hardware failures; moreover, reliable diagnostic
evaluations can extend scheduled maintenance intervals of major
components such as the high-speed turbopumps. Dynamic assessment of
the SSME is very challenging due to thc computational and manpower
intensive naturc of the data acquisition and signal processing operations.
Furthermore, the acquircd dynamic signaturcs taken from various
locations throughout the engine system can be very complex 1o analyzc.
Current SSME dynamic data processing and cvaluation arc performed
post-flight or following ground test with a typical diagnostic turnaround
time of approximately onc day. This primary cvaluation can be
improved upon significantly by automating manual analysis tasks.

One such task involves the evaluation of SSME High Pressure
Oxygen Turbopump (HPOTP) dynamic data for bearing distress
frequency content. The primary failure mode for HPOTP bearings is
uneven ball wear, and the existence of cage frequency components in
HPOTP is used to detect the characteristic bearing defect. Scarching for
cage frequency is difficult due to the character of the SSME HPOTP
dynamic cnvironment as scnsed by the cxternally mountcd
accelerometers and strain guages. Analysts must frequently contend with
structural, combustion, and clectronically generated noisc which mask
the cage indicators. Also, fcedthroughs from the other thrce SSME
turbopumps must be considered. When wear indication is obscrved by
the externally mounted transducers, substantial ball wear has already
taken place. Therefore, any indication of bearing cage or cage harmonic
frequency content in SSME HPOTP dynamic data is justification for
removing the unit from the flight inventory.

Spectrograms, commonly referred to as waterfall plots, arc often

used to detect cage frequencies in high frequency dynamic data



channels. The cage frequency, along with subsequent harmonics, reflect
nonuniform bearing rolling element diameters[Hine, 1989]. However,
monitored HPOTP dynamic data channels frequently contain several
other discrete and random narrow-band components which can coexist
or mask predicted cage frequency signal content. synchronous
frequency (SF), i.c., fundamental rotor speed, and its harmonics along
with structural and hydrodynamic signals contribute to the noise.
Decisions made by analysts are determined by their ability to
distinguish anomalous cage frequencies. Locations of cage and
synchronous frequencies, and their relations to the thrust level changes
are understood by analysts based on past cxpericnces. An analyst may
look for cage frequencies without complicated numerical computations
by simply scanning the hard copies. Occasionally this type of subjective

decision making results in diffcrences in opinions among analysts.
2. Preliminary Analysis

To further illustrate the decision process, two cascs of actual
engine data are presented. The first case is data with anomalous cage
frequency as shown in Figure 3.1, where the x and y axes denole
frequency (in Hz) and time (in frame counts) respectively. The cage

frequency is determined by a method described as below:

Inspecting the plot at approximately 450 Hz, one can locate a series
of very prominent peaks. These peaks arc thc representation of the
synchronous frequency (SF). The SF is used to find cage
frequencics. 2C (2nd harmonic cage frequency) is found as a scrics
of peaks between 390 Hz to 410 Hz (approximately 2 x 0.43 x SF).
[McFadden, Smith, 1983]. As the thrust level changes, SF changes in
proportion. The peak train at approximatcly 590 Hz is feedthrough
from the High Pressure Fuel Turbopump, and can sometimes be

confused for 3C (3rd harmonic cage frequency) data.
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Figure 3.1 Anomatous Case (2485wl45)

The second case, as shown in Figure 3.2, is a nominal case. A
similar procedure is used to determine its health. The SF is located and
cage frequency is searched for. Unlike the abnormal case, there are no
consistent peaks that vary with the SF. The same procedure is rcpeated to
find the harmonics of the cage frequency. This case is found to have no

anomalous peaks at any cage frequencics.
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Chapter IV

IMPLEMENTATION AND RESULTS

The knowledge definition and the classification given above allow a coherent
method to manage human cxpertisc and to automate the expertisc. Using this definition
of knowledge, human expertisc described in the problem statement, Scction 2 of Chapter

I11, can be classified in the following manner.

Explicitly Accessible Knowledge:

Discrete Fourier Transform

Implicitly Accessible Knowledge:

Location of the synchronous frcquency and its harmonics,
Location of the cage frequency and its harmonics,

Thrust level and its affects on synchronous frequency.

Inaccessible Knowledge:

Detection of anomalous peaks in spectral plots.

Further analysis of the human expertise allows a breakdown of the task into

smaller and simpler scquential tasks as shown in Figure 4.1.



Convert Time Domain Data to Frequency Domain

4

Find Synchronous Frequency (SF)

4

Estimate Cage Frequency and harmonic locations

Detect Peaks

$

Make Decision

Figure 4.1. Sequential Breakdown of the Expertisc

Twelve data files were provided by the Structural Dynamics Laboratory at
Marshall Space Flight Center. Thesc time-domain binary files contained vibrational

engine data sampled at 10,240 Hz.
A. Discrete Fourier Transform

The Discrete Fourier Transform defines the relationship betwcen the time
domain data and its representation in the frequency domain. The definition of the

Fourier transform of a continuous signal x(t) is defined as:

o0
X(f)=Flx(®)= [x()exp(—j2nft)ds

—_—00
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The inverse transform is defined as:

+4o0
x(0)=F (XN} = [X(fexp(j2rfr)df

—_—

These valuable relationships deal with continuous infinite length and infinitely
many harmonically related complex exponentials. These relationships can be extended
to sampled data. For a sequence of data that is uniformly sampled, The Discrete Fourier
Transform can be used efficiently. For Discrete Fourier Transforms (DFT), the following

equations are used:

N -1
Analysis Equation: X[k]= Y x[n]W:‘
n=10
N -1
Synthesis Equation: x[n]=(1/N) ¥ X[k]W;k"
k=0
- j(2RIN)

where Wv=¢

The relationship between: frequency resolution, df, size of frame, N, and

sampling time interval, dt, is defined as:

df = 1/ (N x dv)
Since the cngine vibrational data is sampled at 10,240 Hz, in order to achicve df = 2.5
Hz, the frame size, N, is set to 4096.

B. Determination of Synchronous Frequency

The synchronous frequency (SF) plays a very important role since cage
frequency locations are estimated using SF. Assuming that SF exists, one way to find the
SF is to look for the maximum. However, typical cases have shown that the problem is
not simplistic. Two problems arose: 1. Due to discretization crror, the SF scemed to
fluctuate about the cxpected valuc, 2. In some cases, SF docs not manifest itsclf for a
duration of time due to very high noise level. The two problems mentioned above are

illustrated in Figure 4.2.

14



2485wl45 SF
00— ! ; ; ! ! ! !

maxima indices

0 20 40 60 80 100 120 140 160 1i

Figure 4.2 Typical Error in Finding Synchronous Frequency

The lack of synchronous response is overcome in other SSME pumps with the
use of dedicated speed transducer channcls which utilize magenetic pickup type
technology. Unfortunately, the SSME HPOTP speed transducer was not included in the

engine design due to the high dynamic pressure environments scen at the pump inlet.

Discretization errors, which are often manifested as small transient pcaks, can be
minimized by using various digital >ﬁ1ters, for example, averaging or the Butterworth low
pass filter.

For the second case, as shown in Figurc 4.2, when the SF is not well defined,
further investigation is needed. Figure 4.3 displays the first 20 frames of 2485wl45. The
SF is not well cstablished in the first 10 frames, thus creating incorrect maximum indices.
One method of dealing with the lack of definition is to ignore the engine data until an
obvious SF is found. This method can be uscd only if it is assurcd that SF is found for
most of the cases. This ‘ignorc-if-not-sure method' was not considercd since loss of
information may be too grcat when SF is not manifested for a significant duration. An
alternate set of algorithms are investigated to deal with the ill-defined arca. Two such
algorithms take into consideration the analysts' apriori knowledge of the SF: Credibility

and Correlation.

15



frame

0 20 40 60 80 100
index

Figurc 4.3 Iil-delined Synchronous Frequency(2485wl45)

1. Credibility Filter

The first approach deals with credibility of a data point using a simple
credibility filter. A set of ércdibility filters is constructed basced on the analysts’
experience. A set of trapezoid filters is generated. The center of the trapezoid
filter is defined by a priori knowlcdge. As a data point falls away from the
center, the data point becomes less credible. As the data point gets closer to the
mean, the better credibility the data point will have. A scrics of trapezoid

credibility filters were defined as shown in Figure 4.4.

credibility I W >
10!

Figure 4.4 Credibility Filter.
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The credibility is defined as follows:

1.0 if ABS(Mean-data) =< 0.1W
(R = 0.9 if ABS(Mean-data) > 0.5W

1-(5/2W)(ABS(Mean-data)-0.1W) otherwise

where W is the width of the filter,
Mean is the mean of the filter,

ABS is absolute value.

Using a linear modcl, based on an cmpirical model, a sct of predicted SF
is calculated based on the thrust level schedule (Figure 4.5). The predicted SF is

used to construct a series of credibility filters as shown in Figurce 4.6.

Thrust
Levdl
(%)

110

104

100

Elapsed
Time
(sec)
Figure 4.5 Example of Thrust Level Changes
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Figure 4.6 Two-dimensional Credibility Filter with Moving Mcan

After credibility of each data point is determined, a simple rule is
implemented: The less credible a data point is, the more important the a priori
information is. As the data point becomes more credible, the less dominant the a

priori knowledge is. This rule implementation is illustrated as Figure 4.7.

Measured
Max Index

Fuzzy | |

Credibility

>

Estimated
Max Index
(apriori)

New Index

Y

Figure 4.7 Credibility Implecmentation
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Using the credibility filter with W=10, the results are shown as below in
Figure 4.8. It seemed that the level of the high pressure fuel turbo pump was as
high as the SF such that maxima found fluctuated between the level of SF and
the high pressure fuel turbo pump. Figure 4.8 illustrates a case where a
credibility filter effectively eliminated erroneous information. Figure 4.8.a is a
plot of maxima found. By comparing against the expected SF, a credibility plot
is generated as shown in Figure 4.8.c. Finally a new sct of SF is found. The
absolute value of the difference between the expected values and the processed

values is shown in Figure 4.8.c.



index

10 : : 50index

0 N N 35 : ;
0 100 200 300 0 100 200 300
frame frame
(a) Raw SF (maxima found) (byExpected SF

50index

0 100 200 300
frame

(c) Credibility

(d) processed SF

index
2

0
0 100 200 300
(e) abs(Expected SF - Processed SF)

Figure 4.8 Credibility Filter Results (1595ht135)
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Even though the credibility filters were effective for many of the cases,
some data files resulted in less than satisfactory results. Two factors contributed
to the poor results: One reason was that a linear model deviated significantly
from the actual data. It seemed that the lincar model used to calculate the center
of the trapazoid filter was not accurate. This model crror resulted in low
credibility, thus causing a large compensation in the SF level, which became
another source of error. Another drawback in the credibility filter was its
inability to remove discretization error. Discretization error, which is manifested
in the form of small transicnt noise, maps into a credibility value approximately
equal to the noiseless signal. In order to minimize this type of erroneous

reasoning, more elaborate decision criteria had to be implemented.

2. Correlation

The sccond approach to find SF considered an overall shape of the
expected SF and the found SF. Pearson's r [Weaver, 1983] is uscd (o determine
the correlation between the found SF and the expected SF. If lincar correlation
exists, then a new SF is generated based on the expected SF and the actual data

(see Figurc 4.9.).
C Find Maxima )

(Calculate Expected Synchronous Frequency )

( Calculate Correlation Coefficients

'

Find an alternate
Synchronous
Frequency

Linearly
Correlated ?

C Refine Expected Synchronous Frequency )

Figure 4.9 Flowchart: Synchronous Frequency using Correlation
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By use of Pearson's r coefficient, correlation coefficients of two sets of

parameters are found (see Equation 4.2.1). Its linear correlation threshold varies

with the sample size. For a set of data pairs, {(x,y)}, whose mean and standard
deviations are i, O respectively, Pearson's r is defined as :

N
r=
i=
linear
correlation

-1.0

(1t — x: )y — )

oxoN

no linear
correlation

0.0

- - - - (Equation 4.2.1)

[Weaver, 1983]

linear
correlation
+1.0

decision points

Figure 4.10 Linear Correlation Regions

Decision points are given in absolute values, and the valuc is inversely

related to the size of samples. An example is given in Table 4.1 (Weaver, 1983).

For example, with the sample size of 100, the decision points arc +/- 0.196 with

95% confidence [Pearson, Hartlcy, 1966].

SampleSize | DecisionPt | SampleSize | DecisionPt | SampleSize | DecisionPt
5 0.878 20 0.444 80 0.220
10 0.632 50 0.279 100 0.196

Table 4.1 A Guide to Usc Pearson's r Coefficient [Weaver, 1983]

An algorithm to use the correlation coefficients is described as follows:

1.

Find the potential SF by using the maxima function.

22




2. Compare the found SF against the thrust level schedule.

3. If the found SF and expected SF are linearly correlated, then find a
multiplication factor using Equation 4.2.2.

N L.

k _— 1 f(‘)
- Equation 4.2.2
N i3 L (Equad )

where Lf)) is the ith thrust level found, and Le(;) is the ith expected thrust level.
The muitiplication factor, k, is an average of ratios of expected and found values
during constant power thrust levels.

If they are not linearly correlated, use alternate methods, such as credibilility
filters to find another candidate. Continue until a suitable candidate is
found.

4. Multiply & by the expected thrust level to acquire a new SF.
This method is simple to implement and proved to be less noisy than the

credibility method. The correlation / linearization method seemed to create clean

peaks on the 3-D plot. A typical example is shown in Figure 4.1 1.

Raw SF (maxima found) . Expected SF of 2495ht13 & VIN9309
. 50
> :
QD :
© 45 .
£
: . 40
300 100 200 300 0 100 200 300
frame frame
Newer and Better SF
50 T :
Ef, :
.-8. 40 ................. 4[——'_— .
3OO 100 200 300

Figure 4.11 Correlation Coefficients Results
(2495ht135)
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3. Cage Frequencies

The approximate location of the second harmonic cage frequency, 2C, is

found by multiplying the Synchronous Frequency by a factor of 0.86 (=

2x0.43) which is found based on bearing symmetry. In most cases, up to 7C can

be investigated. For simplicity, 2C and 3C are included in cach file for testing.

Since the Synchronous Frequency is determined in terms of indices as described

in Section 2, Chapter 4, cage frequencies are derived in terms of indices as

follows:

Definition:

SFi as the index of SF,

2Ci as the index of 2C,

3Ci as the index of 3C,

StF as the start frequency of a data file in Hz,

SF as the Synchronous Frequency in Hz,

df as the frequency resolution in Hz,

2C, 3C as the two times and three times the cage
frequencies respectively in Hz.

The first index is 1.

Frequency index, Fi, can be expressed in terms of frequency, F, and StF,
F=(Fi-Dxdf+SIF . m

By definition,
2C

=2x 043 x SF

substituting in SF in place of F using (1),

Then 2Ci

=0.86 x ((SFi - 1) x df + StF) ........... )

= (2C - StFy/df + 1

substituting in equation (2),

= 1/df x (0.86((SFi-1) x df + StF) - StF) + 1
= 0.86SFi - (1-0.86)/df x StF - 0.86 + 1
= 0.86SFi - 0.14/df x StF + 0.14 ........... 3)
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By the same method,

3Ci =3 x0.43 x SF reduces to
=1.29 x SFi + 0.29/df x StF - 1.29 + 1..... 4)

Actual values of 2Ci and 3Ci are the closcst integers to the calculated

values. For example, if a file starts at 375 Hz, where the index is 1, and SFi is

determined to be 35 ( or 460 Hz) with a frequency resolution of 2.5 Hz, then

2Ci=9 (or 395 Hz),

3Ci = 89 (or 595 Hz).

Using equations (3) and (4), locations of the cxpected 2C and 3C arc found as

shown in Figurc 4.10.
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Figure 4.10 446HT45 SF, and expected 2C/3C indices
(Raw data without filtering)
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Anomaly Detection

1. ANN Approach

To detect anomalous peaks, Artificial Neural Networks (ANN) are
developed. Various configurations are considered 1o optimize the design. Several
tests using various ANN configurations were performed to find an optimal
configuration. Most of the tested cases used a frequency resolution of 2.5 Hz
since this frequency resolution value is most often used by analysts. One case
used 1.25 Hz case. For the ncural network training, MatLab (MathWorks, Inc.)
and NETS (NASA Johnson Space Center) were used. Both of these software

tools utilize the back-propagation algorithm for training.

a, Initial Training and Propagation Results

The input to the ANN consisted of thirtcen points centered about
the expected cage frequency. To generate a training sct for the ncural
networks, two approaches were considered. The first approach was to
make a manual decision on cach individual frame of a data file. This
approach was done by manually examining cach frame of data to see if
an obvious anomaly existed. Understandably, this approach required
considerable manpower and patience to gencrate a sufficienly large
training sct. This approach involved manually labeling normal and
abnormal frames. First of all, an anomalous data file, 2485PB45, was
chosen. The file was normalized between 0 and 1, and a decision was
manually made by a human opecrator on cach framc. Decision
assignment was 0.9 for nominal, and 0.1 for anomalous frames. This task
was quite subjective, and at times proved to be very difficult to determine
its assignment. There were many cases where the decision of
anomalous/nominal was very difficult. However, it was assumed that if
‘enough good information' is given to the neural network, the network
should be able to learn the desired patterns. A total of two hundred and
seven frames were individually evaluated and tagged. Scven artificial sets
were added to accentuate the importance of the middle of the frame.
Over all, the training file included 149 anomalous frames and 58

nominal frames. The ncural nctwork consisted of 13 input neurons, 8
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hidden layer neurons, and 1 output ncuron. After several iterations, RMS
error was reduced to 0.11, and the training was halted. The training set
was used to verify the learning. The results were almost inconceivable.
Out of 207 frames, there were only 2 errors. This accurate mapping
seemed surprisingly good due to the subjective nature of the manual
decisions. However, good training did not seem to translate to a better
design. When tested using other files, this network failed. It seems that
the network has learmed some specific idiosyncrasies about the training
set, and the learned behavior was not able to generalize. This conclusion
was verified further by re-examining the training file. One of the
artificial frames was mistakenly labelled wrong, and the neural nctwork
mapped this frame just as it was trained. This ability to converge to the
training sct was impressive, but the lack of generalization was of scrious
concemn. More tests will be required to characterize this behavior using
larger scts of training data.

The sccond approach was sclecting one data filc with nominal
data and another data file containing anomalics. Then cach file is tagged
as nommal (0.9) and abnormal (0.1). The objective of this approach was
to see if the ANN could lcarn by itself the inhercnt distinction between
normal and abnormal cascs. This approach to label cach data file as a
whole must contain 'enough good information." On many occasions, the
cage frequencies do not appear for the full duration of the test.
Therefore, a subjective decision should be made whether a file include
enough good information.

Due to their inherent propertics, ANNs do not lend themselves to
thorough verification. However, it is nccessary to have some
understanding of the trained nctwork. A file, 2474wld0, was uscd to
propagate and to test the trained network using the file labeling. The file
included 13 points centered at the calculated cage frequencies (2C and
3C). The 13 points were normalized such that the lowest value was set to
0, the highest 1. When the data was propagated, thc results seemed to be
inaccurate. Defining the correct response to be less than 0.2, out of 250
frames, the ANN found 3 hits for 2C case, and 10 hits for 3C. It was
hypothesized that the reason for the low hits was due to the skewing of
the peaks. Each data set was shifted left one at a time, and 0.5 was added

as the 13th clement. The following results were compiled with shifting.
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2C 3C
shift left 0 3 10
shift left 1 3 28
shift left 2 34 15
shift left 3 4 N/A

position of thc pcaks.. Using this information, an ANN architecturc was

implemented to usc rotated input sequences.

Table 4.2 Network Testing with Shifts

It became apparent that the trained network was very scnsitive about the

b. Artificial Neural Neitwork Design

i, Rotate and Propagate

An artificial ncural network with 13 input neurons, 8
hidden layer neurons, and 1 output ncuron was traincd with two
2.5 Hz files: 446ht13L (anomalous) and 2495ht13L (nominal).
These two files are generated using the Pearson’s r and
linearization technique as described in Section B.2, Chapter IV.

Then 3C file from 446ht13 was used for consistent peaks (see

Figure 4.13).
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Figure 4.14 2495ht13L file (nominal) for training
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To reveal the nature of the training sets, maxima location
of each frame was determined and plotted (Figures 4.15 and
4.16). The nominal training set (2495htl13L) displays even
distribution of maxima whereas the anomalous case (figure 4.16)
has over 70% of its maxima located in the frequency bin #3.

This contrast in peak distribution is used to train ncural networks.

2 4 6 8 10 12 13

index

Figure 4.15 Maxima Distribution of 2495ht13L(Nominal)
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Figurc 4.16. Maxima Distribution of 446t13L (Anomalous)

The training was donc using back propagation with various
learning rates. The output assignments were 0.1 for the nominal
case, and 0.9 for the anomalous case. The first training set
consisted of the above two files appended consccutively. Each
file contained 252 time frames with normalizcd magnitude to
have the maximum magnitude of 1 and minimum of 0. Training
a neural network involves fairly mundanc tasks of sclecting
transfer functions, hidden layers, transfer functions, ctc. Various
leaming rates were uscd ranging from 1 to 0.001. High lcarning
rates scemed to incur rapid changes, usually resulting in
oscillation, but overall crror did not scem to get smaller. It
seemed that a leaming rate of 0.01 allowed a rcasonable training
point. The transfer function used for this training was the Logsig

function (sce Figurc 4.17).
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logsig (n)

Log-Sigmoid without bias

..................
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Figure 4.17 Logsig Transfer function
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Figure 4.18 Leaming Rate = 1
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Epoch

Figure 4.19 Learing Rate = 0.01
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One aspect of the leamning was of concern. If the neural
network was presented with 252 of the anomalous frames first,
would the network prematurely converge before nominal data
can be presented? Would a mixed training set perform better?
With these questions in mind, 400 frames out of 504 frames were
randomly selected and swapped. Using the same learning rate of
0.01, a new leaming was performed. There was a faster reduction
of summed squared error using the randomly swapped input file
(Figure 4.21). And at 1000 epochs, the error was reduced to
approximately 250, as opposed to over 300 for the non-swapped
case. After 2000 epochs the training stopped (Sec Appendix A

for the weights and biases).

2 Layar(13.8.11 Ir=0 31 swap <00 rames wuad

Sum-Squared Emor

a 200 400 600 flols] 1000 1200 1400 1600 1800 2000
Epoch

Figure 4.20 Sequential Training

2 Layer(13.8.1) 1r«0.001 no swap 428/94

Sum-Squared Entar
au
T

10 -y
Q 500 1000 1500 2000 2500 Jo00
Epoch

Figure 4.21 Alternate Training
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A hit is defined to be a propagated valuc grcater than or
equal to 8.5 and less than 9.5. Initial propagations indicated that
the network was very sensitive to the magnitude and location of
the peaks. For example, when raw data is propagated without
normalization, there were O hits. Also when the pcaks were
shifted, the results were less than satisfactory. Using these
observations, all data sets were scaled such that the maximum
number in the file would be 1.0. In addition, the 13 data points
were rotated and propagated to find consistent pcaks(Figure

4.22). The results are summarized in the Table 4.3.

v

000000000 000 O
>

Figurc 4.22 Rotate and Propagatc

File Name ANN 2C Hits ANN'3C Hils | ANN Dccision | *Experts
Dccision

1595PB45 21 37

1595WL45 20 50 max=21,50 2

1675HT135 17 13

1675PB45 5 21

1675WLA45 34 34 max=34, 34 2

2495HTI13SL |14 148

:Training Set

2495PB45 11 105

2495WLA45 19 164 max=19,168 0

446HT135 14 123

:Training Set

446PB45 19 29

446 WL45 11 92

446WLDO 26 17 max=26,123 3

Note *: Expert's decision is denoted O to 5, where O represents normal data and 5 represents highly

recognizable anomaly.

Table 4.3 Rotate and Propagate
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Inspection of the results, as shown in Table 4.3, seems to indicate
correlation between the peaks and the hits. A high number of hits
represents a consistent series of peaks. What did the ncural
network learn? Did the network uﬁderstand the concept of
anomalous peaks? To understand the inner workings of the
neural networks, a test is performed with a known paramcter that
assimilates anomalous peaks. It is shown from previous cases that
maximum values scem to represent the prominent peaks, as
shown in figures 4.15 and 4.16. Thus a test is performed to see if
the locations of maxima arc correlated with the ncural network
output. Even though the 2495wl45L file docs not include any
anomalous peaks, the file includes consistent peaks (high
pressurc fucl synchronous feedthrough) that can be used as test
peaks for the neural network. It is evident from the plots (Figure
4.23 ), the trained nctwork correctly identifics maximum peaks
located at the frequency bin #3 (Figure 4.23.i). When the peaks
are shifted right 1 time such that the peaks arc now located in the
bin #4, the neural network is able to detect the pcaks with some
noise. However, when the peaks are shifted Ieft, the network is not
able to detect the peaks at all. Since the maxima scem to be at
two discrete levels for this case, two ANN output rcadings can be
made for cach index for better understanding of pcak locations
and ANN outputs. Table 4.4 delineates the statistical distribution
of the ANN output. 'Index' column rcpresents an index where
maximum values fall. For example, after 6 shifts (Figurc 4.23.g),
the majority of maxima fall in index 1 and index 12. Mean and
standard deviation is calculated for these two indices and
tabulated. This process is continucd until all data has bcen
tabulated. Inspection of the table scems to indicate closc
correlation of the maxima location and the ncural network

output.
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Another observation is made about the neural network. When the
maxima is located at index #4, the neural network produced high
output signaling peak detection. This may be due to an
unintended source of error in the training data set. The training
set 446ht13L included 70% of maxima at index 3 and 10% of
maxima at index 4. It scems that the ncural network has learned
to recognize peaks at location 3 as well as 4. The next four
prominent indices (2,10,11,13) in 446ht13L do not scem to
affect the output, which is a desirable noise immunity attribute of

neural networks.

index shift] mean std dv shift mean std dv
1 6 0.0340 | 0.0091 8 0.0490 | 0.0183
2 7 0.0310 | 0.0373 9 0.0425 | 0.0421
3 8 0.9427 | 0.0081 10 0.9246 | 0.0247.
4 9 0.9120 | 0.0667 11 0.8481 | 0.0279
5 10 0.0464 | 0.0192 12 0.0710 | 0.0340
6 11 0.0881 | 0.0279 0 0.1206 | 0.0424
7 12 0.1211 | 0.0538 1 0.1767 | 0.0748
8 0 0.5665 | 0.1082 2 0.4753 | 0.1030
9 1 0.1080 | 0.0364 3 0.1377 | 0.0420
10 2 0.0418 | 0.01%54 4 0.0638 | 0.0283
11 3 0.3577 | 0.1002 5 0.3303 | 0.0998
12 4 0.0465 | 0.0185 6 0.0682 | 0.0272
13 S 0.2753 | 0.0839 7 0.2633 | 0.0840

Table 4.4 Maxima Location and ANN Output

36



ingex

index

Figure 4.23 Comparison of Maxima and ANN Output
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Comparison of Maxima and ANN Output(Cont'd)
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Comparison of Maxima and ANN Output (cont'd)
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Comparison of Maxima and ANN Output (cont'd)
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Comparison of Maxima and ANN Output (cont'd)
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b. Other necural network dcsigns

Two other configurations arc designed and tested: 1.
Shift-and-propagate, 2. Peak Dctector. In this document a brief
summary is provided for completeness. For further dctails, refer

to Kim and Kissel [Kim, Kissel, 1994].

Shift and Propagate : A nctwork with 13 input nodes with
varying size of a hidden layer is trained with two 1.25 Hz files:
2485wl45 (anomalous), and 2495wl45(nominal). For testing, 21
normalized points were sclected from cach spectral frame
centered at the expected frequency. The first 13 points were
entered into the trained nctwork for propagation. Then the 21-
point data set is shifted left, and 13 points arc again input to the
trained network. This continues until the last 13 points of the set
are used for propagation (Figure 4.24). The trained network

performed well to detect 2C peaks.
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Figure 4.24 Shiftcd Input Data Scts

Peak Detector : This peak detector design utilizes an assumption
that a definition of 'pcak’ can be taught to the artificial ncural
network. In order to achicve this leaming, two files, 2485wl45
and 2495wl45, were uscd. Instcad of providing 13 points, the
peak detector network was provided with 10 {rames of 3 points
from the two files. If there was an anomaly, the pcak would
appear consistently at the second (or middle) point of cach frame
(Figure 4.25). In addition to the purcly gcometric definition of
peak, by providing 10 framcs of data, the neural nct was to learn

about subtletics of any temporal relationship between frames.

l...ll..j..........l.‘ﬂl...ll’.ﬂ

frame #1 frame #2 frame #9 frame #10

Figurc 4.25 Pcak Detection using 10 Frames

The results using the peak detector scemed accurate. This
technique provided not only the number of peaks but the
location of the peaks. For more details, refer 1o Kim and Kissel
{Kim, Kissel, 1994].
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2. Decision

Until this point, peaks are found using artifical neural networks after
performing data reduction using Pearson's r or analog logic. The next task is to
establish a statistical data base to determine the threshold such that a decision can
be made on the health of SSME turbo pump bearings. One approach can be a
pure peak counter as described above. This approach would require a
tremendous amount of data and time to establish a numerical threshold value. A
better approach is to take into account consecutiveness of peaks. For example, if
three peaks appeared consccutively, how much more meaningful is that data
instead of seeing three peaks that are scattered? Incidentally, engine analysts
employ a similar approach. A scrics of concentrated peaks are given more
significance than the same number of peaks that arc randomly distributed.

Table 4.5 delincates the results of peak counting and consecutive peak
algorithnis. The consecutive peak counting algorithm provides an alternative to
examining the anomalous peaks. However, it is not clear from the limited test

cases which algorithm is more effective at this time.



File Name ANN 2C |[ANN3C |2C max 3C max *Expert's
Hits Hits conse hits | conse hits | Decision

1595PB45 21 37 2 11

1595WLA4S5 20 50 2 11 2

1675SHT135 |17 13 1 1

1675PB45 S 21 2 1

1675WLA45 34 34 3 2 2

2495HT135L| 14 148 1 23

:Training Set

2495PB45 11 105 1 9

2495WL45 19 164 1 164 0

446HT135 14 123 2 9

:Training Set

446PB45 19 29 1 2

446WL45 11 92 1

446WLDO 26 17 1 S 3

44

Note *: Expert's decision is denoted 0 to 5, where 0 represents normal data, and 5 represents highly

recognizable anomaly.

Table 4.5 Results of Peak Counting and Consecutive Peak Algorithm
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Chapter V

CONCLUSIONS

A definition of knowledge was proposed in this document to provide a
framework to model human knowledge. Knowledge classification was defined as
Explicitly Accessible, Implicitly Accessible, and Inaccessible. Analog logic and ANNs
were effectively used to model a decision process to detect anomalous cage frequencies.

The Space Shuttle Main Enginc (SSME) High Pressure Oxygen Turbopump
(HPOTP) data, sampled at 10,240 Hz from various external locations using strain guages
and accelerometers, were converted to frequency domain data using the Fast Fourier
Transform. In order to reduce the data, analog logic and correlation werc implemented
to extract the arcas of interest. Credibility filters and Pearson’s r werc implemented to
construct the Synchronous Frequency from which cage frequency locations were
estimated. This approach was implemented to producc thirteen points centered about
the expected cage harmonic frequency location.

ANNs were trained using the back propagation technique to determine pcaks in
the spectral domain. Several configurations of antificial ncural nctworks were tested and
documented. The ANNs scemed to identify pcaks correctly to assimilate human analysts'
visual inspection. A statistical distribution of maxima was comparcd with the results from
ANN propagation to gain insight into the trained nctwork. This statistical distribution
scemed to indicate that the location of the maxima had a strong correlation with the
output of the neural network. The neural network seemed to have learned its mapping of
input and output without explicit instructions.

There are many features that make this type of approach suitable for automation
of manual tasks. Definition of knowledge and modcling techniques allows easier
translation of human knowledge to computerized automation. Analog logic allows direct
translation of linguistic expression to quantitative numbers. ANNs can be implemented
to optimize their sclf-lcarning capabilitics without explicit instructions. ANNs can be
especially beneficial when human knowledge is difficult to articulate.

Based on this research, the following tasks arc proposed to be investigated

further:



« In order to make an automated system, a more advanced type of decision
algorithm is required to take into account the intensity of the peaks,
discrimination of line noise from abnormal data, and past experiences.

« Better definition of 60Hz data and other pertinent information, such as fuel
pump data, should be given to the neural networks so that cage frequency can

be discriminated from other irrelevant data.
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Appendix A:

Artificial Neural Network Parameters



SHIFT AND PROPAGATE PARAMETERS (1

Wl =

Columns 1 through 7

-0.2205
1.4083
-0.4572
0.7994
-0.8600
-0.4106
0.2012
-0.7805
0.5324

0.0255
-1.7710
0.3848
-0.1463
-0.6219%
0.1560
0.0906
-0.1112
-0.3947

Columns 8 through 14

-0.0277
-1.4170
-0.1385
-0.3966
~0.9446

0.0522
-1.0306
-0.3548
-1.3553

Columns 15

0.0392
-1.0089
0.2997
0.6210
1.0726
-0.2283
-0.2043
-0.0365
-0.8624

Cglumns 22

-0.2602
-0.7722
-0.1163
1.2312
-0.5115
-0.0982
-0.0676
0.1436
0.1552

Columns 29

-0.1742
-0.6564
1.1624
-1.2073
0.0228
0.3395
-1.1591
-0.3808
-0.9474

-0.3377
0.2880
0.7119
0.2238
0.3958
0.0559

-0.0861

-0.0027

-0.3854

through

-0.1468
-0.4127

0.4256

1.0954
-0.2837
-0.2317
-0.2694
-0.5641
-0.2570

through

-0.1514
-0.4405
0.4848
-1.1187
0.2395
0.1851
0.0020
-0.7380
0.5865

through

0.2265
-1.1679
0.2859
0.5666
0.9671
0.0209
-0.0423
0.3940
-0.5041

21

28

of 2)

-0.0294
-0.8315
0.4565
0.1157
-1.2588
0.0750
-0.4790
0.0090
0.5893

-0.5169
-0.8322

0.0442

1.4413
-0.6383
-0.6805
-0.0553
-0.2003

-1.4227

-0.0198
-0.8799
0.6892
-1.9407
-1.4759
0.4223
-0.1676
-0.4750
1.2159

-0.0591
-0.4783
0.2305
0.3375
1.4807
0.1720
0.4021
-0.7710
0.4537

-0.3790
0.2501
0.1258
1.0177

-0.5633

-0.4506
0.0437

-1.3214

-0.4454

0.0042
-0.9631
-0.2153
-0.1822
-0.9919

0.2698
-0.0379
-1.0442

1.7290

0.2012
0.5255
-0.1704
0.2896
1.5632
0.3896
0.2632
-0.4480
1.6124

-0.5249
0.1422
0.1438
1.6606

-0.1937
0.0278

-0.0300

-0.6133
0.6174

0.1606
1.6040
0.3068
-1.1560
-1.2257
0.1744
-0.9882
0.1259
1.4631

-0.1252
0.6908
0.6068
1.1730
1.4657
0.0850

-0.0984
0.9775
0.7316

-0.4357
-1.0989
0.8726
1.5091
-0.3636
-0.5429
0.3617
-0.6881
1.01464

-0.1001
-0.0324
0.2732
-0.0280
0.7012
0.1930
-0.5545
-0.6861
1.1963

0.2493
0.9984
0.1800
0.1994
-0.1862
-0.2894
0.0499
1.4597
0.6267

-0.3800
0.7943
0.0852
0.7878

-0.2012

-0.1366

-0.6341

-0.7228
0.2531

0.0108
-0.4742
-0.0203
-0.7880
-1.1859

0.0884
-0.5948
-0.4746

0.3667

-0.0668
0.9236
0.0927
0.9444
0.4081
0.0812

-0.5582
0.9242

-0.1149

-0.2605
-0.5730
0.0555
1.6783
-0.8889
-0.1357
0.4524
-0.6140
1.6365

-0.2069
-0.4423
-0.0662
-1.3708

-0.5888

0.1491
-0.7628
-1.2034
-1.4%00

-0.0449
-0.6783
0.1180
0.5451
1.5613
0.0201
-0.0723
-0.7865
-0.7992

-0.307
-0.3892
0.3401
2.5016
-0.2519
-0.2950
0.0947
-0.5875
0.8880



SHIFT AND PROPAGATE PARAMETERS (2 of 2)
W =

Colums 1 through 7

-1.1118  -3.5790 -2.1850 -2.9365 3.8081

Colums 8 through 9

3.3284 4.1655

81 =
B2

0.5335
-0.4086
0.1243
-0.6208
-0.9886
0.2876
-0.4304
0.2425
1.2105

-0.4554

-1.0371

/_7/41/9’.

-2.0264




Appendix B:

Typical Mission Profile File
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VI2321R2(2485) T sch.TXT

An Example Thrust Level Schedule

Test 2485 ‘
Time (sec) Thrust Level(%)

0 0

5 100

10 100

10 104

60 104

67 100

80 100

Page 1



Appendix C:

Related Test Results
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2C
3c

EEG
HPOTP
MSFC
NASA
SF
SSME

Abbreviations and Acronyms

second harmonic cage frequency

third harmonic cage frequency

artificial neural networks
electroencephalogram

high pressure oxygen turbopump

Marshall Space Flight Center

National Aeronautics and Space Administration
synchronous frequency

space shuttle main engine
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